

Journal of Organometallic Chemistry 489 (1995) 201-205

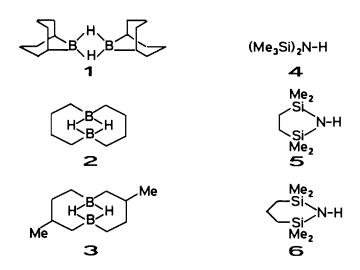
Reactions between tetraalkyldiboranes(6) and disilazanes – A convenient route to N-silylamino-dialkylboranes

Bernd Wrackmeyer *, Bernd Schwarze, Wolfgang Milius

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany

Received 19 July 1994

Abstract

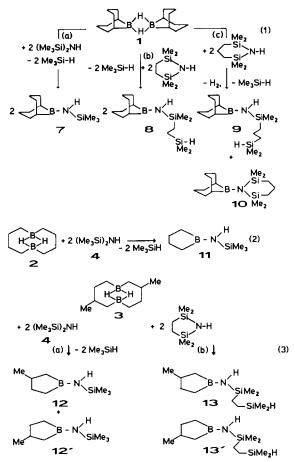

Thermally stable tetraalkyldiboranes(6) such as bis(9-borabicyco[3.3.1]nonane (1) and the 1,2:1,2-bis(tetramethylene)diboranes(6) (2,3) react with disilazanes such as 4 [(Me_3Si)_2NH] or 5 [Me_2SiCH_2SiMe_2-NH] selectively by cleavage of the N-Si bond and formation of the Si-H bond. This affords N-silyl derivatives of 9-amino-9-borabicyclo[3.3.1]nonane (7,8) and of 1-amino-boracyclopentane (11-13) in high yield. INEPT-HEED experiments were used to determine coupling constants ${}^{1}J({}^{29}Si^{15}N)$ in N-silylaminoboranes for the first time. Dimeric 9-amino-9-borabicyclo[3.3.1]nonane was isolated from crude reaction mixtures of 1 and 4, and it was characterized by single crystal X-ray analysis (triclinic, space group $P\overline{1}$).

Keywords: Amide; Amine; Borane; Hydride; NMR; X-ray diffraction

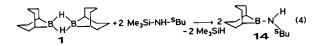
1. Introduction

The reaction between boranes with one, two or three B-H bonds and various amines is well known to proceed via H_2 elimination to give aminoboranes [1]. The analogous reaction of such boranes with N-silylamines has received only scant attention [2,3], although the question whether the N-H or the N-Si bond is cleaved may be of considerable importance in the synthesis and chemistry of aminoboranes. It has been reported [2] that the reaction between diborane and hexamethyldisilazane, (Me₃Si)₂NH, gives an adduct which, on heating, produces H₂, Me₃SiH and the borazine [HBNSiMe₃]₃; with BH_3 -THF in THF and (Me₃Si)₂NH, it was observed that various products were formed in the beginning and finally the same borazine was obtained [3], again by elimination of H_2 and Me₃SiH. This suggests that the cleavage of N-H and N-Si bond compete with each other. To the best of our knowledge, reactions between tetraalkyldiboranes(6) and N-silylamines have not been studied previously. In the present work we have examined the

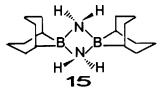
0022-328X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05148-8


reactivity of the thermally stable tetraalkyldiboranes(6) (1-3) towards noncyclic (4) and cyclic disilazanes (5,6).

2. Results and discussion


All reactions between 1-3 and 4-6 require heating in boiling toluene for 24 to 48 h. In the case of 1, a small amount of THF acts as a catalyst and the reactions become faster by a factor of two to three. It is

^{*} Corresponding author.


known [4] that 1 can be cleaved by THF to give the adduct THF-9-BBN which is much more reactive than 1. The reactions proceed in the most clean way when the starting materials are mixed without any solvent and heated to 120-130°C for 5 to 6 h. There is clear evidence for cleavage of the N-Si and formation of the Si-H bond [Eqs. (1), (2) and (3)] rather than for cleavage of the N-H bond and formation of H₂. Only in the case of 1 and 6, a 2:1 mixture of the aminoboranes 9 and 10 is observed, the latter being the result of H₂ elimination. Owing to restricted rotation about the B-N bond, the aminoboranes 12 and 12' as well as 13 and 13' are present in a 1:1 ratio. Except for the mixture of the compounds 9 and 10, the products can be readily purified by distillation under reduced pressure to give in general > 80% of 7, 8, 11, 12/12', and 13/13' as moisture-sensitive, colorless liquids.

In order to check further on the competition between cleavage of the N-H and N-Si bond in reactions with tetraalkyldiboranes(6), we have carried out the reaction between 1 and Me₃SiNH-^sBu (Eq. (4)). The sole product was 14 which results from elimination of Me₃SiH.

If crude reaction mixtures containing 7 and small amounts of the starting materials 1 and 4 were left without distillation, it was always observed that colorless crystals separated from these mixtures. Based on ¹H-, ¹¹B- and ¹³C-NMR spectra this material was identified as bis(9-amino-9-borabicyclo[3.3.1]nonane) 15 [1g]. This was confirmed by determination of the molecular structure of 15 [5] by single crystal X-ray analysis (vide infra). Compound 15 can be obtained in high yield from the reaction between 1 and ammonia [1g]. In our case, 15 must have been formed in the course of exchange processes which do not take place in pure samples of 7.

The straightforward synthesis of the N-trimethylsilylaminoboranes 7, 8, 11, 12 and 13 [Eqs. (1)–(3)] has certain advantages over other potential routes: (i) alkali metal (M) derivatives of the type MNHSiMe₃ are not easily accessible; therefore salt elimination reactions are not helpful; (ii) cleavage of the Si–N bond by boron halides is thoroughly documented [2,6,8], however, side reactions may occur if N–H bonds are present [7,8] as in the silazanes 4–6 (the aminoborane 12 was prepared previously in moderate yield from 1chloro-3-methyl-1-boracyclopentane and (Me₃Si)₂NH [8]); (iii) the ring-opening of the cyclic silazane 5 to give 8 or 13/13' is remarkable, since the synthesis of such aminoboranes would require a multi-step synthesis by other routes.

Aminoboranes of type 8 or 13 may have further synthetic potential considering the rich chemistry of silanes with Si-H bonds. Another interesting point concerns the lithiation of these aminoboranes, in particular the lithiation of 7 by using ^tBu-Li. Reactions of this amide with metal halides should afford new metal amides.

2.1. NMR spectroscopic results

¹¹B, ¹³C, ¹⁴N, ¹⁵N and ²⁹Si NMR data of the aminoboranes 7–13 are listed in Table 1, ¹H NMR data are given in the experimental part. The ¹H and ¹³C NMR data show for 7, 8, 9, 11, 12/12', 13/13' and 14 that there is restricted rotation about the B–N bond. This was not mentioned in the literature for compound 12 [8]. In the case of 7 (at 100°C) and 12 (70°C), the ¹³C NMR spectra allowed to evaluate [9] the energy of activation for this process (7: $\Delta G_{(373K)}^{\#} = 75 \pm 1 \text{ kJ mol}^{-1}$; 12: $\Delta G_{(343 \text{ K})}^{\#} = 74 \pm 1 \text{ kJ mol}^{-1}$). The chemical shifts δ^{11} B lie in the expected range [10] for

N-silylaminodialkylboranes. This is also true for the δN values [11] with ¹⁵N resonances shifted to higher frequencies as compared to the disilazanes [$\delta^{15}N = -354.2$ (4), -354.0 (5), -356.9 (6)]. It seems that the δ^{29} Si data do not reflect any BN(pp) π interactions if one compares with δ^{29} Si of the disilazanes [δ^{29} Si: +2.4 (4), +12.8 (5), +2.9 (6)].

¹⁵N NMR spectra can be readily measured indirectly via ¹H detection by using ¹H/¹⁵N HMQC techniques [12] since the presence of the boron atom has little influence on the ${}^{1}H({}^{15}N)$ magnetization [13]. The direct measurement of ¹⁵N NMR spectra is time-consuming, even for concentrated samples, since the ¹⁵N NMR signals are significantly broadened (linewidths of 10-20 Hz) owing to partially relaxed scalar ${}^{15}N{}^{-11}B$ coupling. Therefore, ²⁹Si satellites are difficult to observe and this appears to be the reason for the absence of any data ${}^{1}J({}^{29}\text{Si}{}^{15}\text{N})$ for N-silylaminoboranes in the literature. However, N-silvlaminoboranes are ideal candidates for applying Hahn-echo extended (HEED) pulse sequences [14] in order to facilitate the measurement of ${}^{1}J({}^{29}\text{Si}{}^{15}\text{N})$ from ${}^{29}\text{Si}$ NMR spectra (see Fig. 1). The delay in the Hahn-echo part of the sequence is selected in order to suppress magnetization of the ²⁹Si-¹⁴N isotopomer, leaving the magnetization of the

Fig. 1. 49.7 MHz 29 Si NMR spectrum of 7, recorded by using the INEPT-HEED pulse sequence (refocused with ¹H decoupling; Hahn-echo delay 0.5 s). The residual signal of the 29 Si-¹⁴N isotopomer is accompanied by the doublet due to the 29 Si-¹⁵N isotopomer.

Table 1

¹¹B-, ¹³C- and ¹⁴N, ¹⁵N NMR data ^a of the N-silylaminoboranes 7–13 and of the aminoborane 14

Compound	$\delta^{11}B$	$\delta^{13}C(BR_2)$	δ^{13} C (NSiMe ₃) and others	δΝ	δ ²⁹ Si
7	+ 54.6	25.2, 29.2 (BCH)	1.7	- 287.0 (¹⁵ N)	+ 3.7
		33.4, 34.0 (CH ₂)			[14.7]
		23.6 (-CH ₂ -)			
8	+55.0	25.6, 29.2 (BCH)	-0.4 (SiMe ₂), -4.6 (SiMe ₂ H)	-291.0 (¹⁴ N)	+5.8
		33.9, 33.2 (CH ₂)	10.8 (NSiCH ₂)		[41.1]
		23.6 (-CH ₂ -)	6.4 (HSiCH ₂)		-9.7
9	+ 55.7	29.1, 25.4 (BCH)	-0.1 (SiMe ₂), -4.3 (SiMe ₂ H)	$-283.5(^{14}N)$	+2.9
		33.9, 33.4 (CH ₂)	22.3 (NSiCH ₂), 18.9 (-CH ₂ -)		-14.0
		$23.6(-CH_2-)$	18.8 (HSiCH ₂)		
10	+58.0	27.3 (BCH)	$3.2 (SiMe_2)$	-291.5 (¹⁴ N)	+4.0
		$33.4(CH_2)$	20.5 (NSiCH ₂), 17.2 (-CH ₂ -)		
		$23.0(-CH_2-)$			
11	+ 57.6	21.0, 19.1 (BCH ₂)	1.2	-287.8 (¹⁴ N)	+4.8
		28.1, 26.7 (CH ₂)			[14.5]
12,12′	+ 57.6	21.0, 18.7 (BCH ₂)	1.2	- 287.1 (¹⁵ N)	+ 4.8
		31.0, 29.0 (BCH ₂)			[14.4]
		22.8, 22.9 (CH ₃)			
		35.0, 34.9 (CH ₂)			
		36.5, 36.2 (CH)			
13,13'	+58.3	20.1, 18.3 (BCH ₂)	-1.7 (SiMe ₂), -5.5 (HSiMe ₂)	-290.0 (¹⁴ N)	+6.8
		30.6, 18.8 (BCH ₂)	9.5 (NSiCH ₂), 5.4 (HSiCH ₂)		
		22.2, 22.1 (CH ₃)			
		34.3, 34.2 (CH ₂)			
		35.7, 35.5 (CH)			
14	+48.1	27.1, 22.4 (BCH)	49.4 (NCH), 33.4 (CH ₂)	-265.5 (¹⁴ N)	_
		33.8, 33.8,	24.9 (NCCH ₃),		
		33.1, 33.0 (CH ₂)	11.1 (CH ₃)		
		23.9, 23.8 (-CH ₂ -)	-		

^a In C₆D₆ ($\approx 10-30\%$, V/V) at 25 ± 1°C; coupling constants ¹J(²⁹Si¹⁵N) in Hz are given in square brackets.

Formula	$C_{16}H_{32}B_2N_2$		
Molecular mass	274.1		
Crystal size (mm ³)	$0.35 \times 0.35 \times 0.30$		
Lattice parameters	a = 660.7(2), b = 719.7(2),		
	$c = 950.9(2) \text{ pm}; \alpha = 76.86(2),$		
	$\beta = 89.82(2), \gamma = 66.01(2)^{\circ}$		
Space group; Z	<i>P</i> 1; 1		
Volume (Å ³); ρ (calc) (g cm ⁻³)	400.3(2); 1.137		
Diffractometer	Siemens P4; graphite		
	Monochromator		
Radiation	Mo K α , $\lambda = 0.71073$ Å		
Temperature [K]	296		
20 Range	4 to 55		
Reflections collected	2294		
Unique reflections	1820 (no reflections omitted)		
System used	SHELXTL-PLUS		
Solution	Direct methods		
Weighting scheme	$w = 1/\sigma^2(F)$		
R; wR	0.050; 0.045		
Number of param. refined	108		
Max./min. resid. elec. dens.	$0.33 / -0.19 (e/Å^3)$		

Table 2 Data for the X-ray analysis of bis(9-amino-9-borabicyclo [3.3.1]non-ane) (13) ^a

^a All non-hydrogen atoms were refined with anisotropic thermal parameters. The position of hydrogen atoms was calculated assuming ideal geometry. In subsequent Fourier syntheses the hydrogen atoms were taken into account.

²⁹Si⁻¹⁵N isotopomer almost unaffected. In the case of 7, 8, 11–13, we found by this technique that ${}^{1}J({}^{29}Si^{14}N)$ ranges between 14.1 to 14.7 Hz, the values being only slightly increased as compared with ${}^{1}J({}^{29}Si^{15}N)$ in the disilazanes [13.5 (4), 13.7 (5) [15], 11.6 Hz (6)].

2.2. X-ray analysis of 15 [16]

Experimental data of the X-ray analysis of 15 are given in Table 2. The molecular structure of 15 is depicted in Fig. 2 and the caption of Fig. 2 contains selected bond distances and angles. The four-membered NBNB ring is planar and almost square. Both

C(6) C(5) C(7) C(4) C(7) C(8) C(3) C(3)

Fig. 2. Molecular structure of the dimeric 9-amino-9-borabicyclo [3.3.1]nonane (15). Selected bond lengths [pm] and bond angles [°]: N-B 161.3(1), B-C(1) 159.5(2), B-C(5) 160.1(2), C-C 152.8(2)-154.5(2); NBN 91.2(1), BNB 88.8(1), NBC(1) 113.8, NBC(5) 114.6(1), C(1)BC(5) 108.1 (1).

six-membered rings of the bicyclic systems adopt the chair conformation as usual [17,18]. In spite of the small bond angle NBN = 91.2(1)° in the four-membered ring, the other endocyclic bond angle C(1)BC(5) = $108.1(1)^{\circ}$ remains close to the ideal angle for tetrahedral surrounding. This is presumably enforced by the bicyclic system. All bond distances and other bond angles are found in the expected range.

3. Experimental details

All preparative work and the handling of the samples was carried out under N₂ atmosphere, using dry glassware and dry solvents. Hexamethyldisilazane (4) was used as a commercial product; the boranes 1 [19], 2 [20] and 3 [21] and the silazanes 5 [22] and 6 [22,23] were prepared following literature procedures. Elemental analyses: Fa. Pascher, Remagen; El-MS spectra (70 eV): Varian MAT CH 7 with direct inlet. – NMR spectra: Jeol FX 90 Q (¹¹B, ²⁹Si), Jeol EX 270 (¹³C, ¹H), Bruker ARX 250 and Bruker AC 300 (¹H, ¹¹B, ¹³C, ¹⁵N, ²⁹Si); chemical shifts are given with respect to Me₄Si (δ^{1} H(C₆D₅H) = 7.15; δ^{13} C(C₆D₆) = 128.0; δ^{29} Si: Ξ (²⁹Si) = 19.867184 MHz), Et₂O–BF₃ (δ^{11} B: Ξ (¹¹B) = 32.083971 MHz), neat MeNO₂ (δ^{14} N: Ξ (¹⁴N) = 7.226455 MHz; δ^{15} N: Ξ (¹⁵N) = 10.136767 MHz).

3.1. 9-Trimethylsilylamino-9-borabicyclo[3.3.1]nonane(7)

A mixture of 6 g (24.6 mmol) of bis(9borabicyclo[3.3.1]nonane) (1) and 12 g (200 mmol) of $(Me_3Si)_2NH$ (4) was prepared at room temperature and heated to 120–130°C for 5 h. Then the excess of 4 was distilled off and fractional distillation gave 9.0 g (89.7%) of 7 as a colorless liquid (b.p. 75°C/0.1 Torr). El-MS: m/z (%) = 209 (38) [M⁺]; 194 (30) [M⁺-Me]; 100 (55) [C₃H₁₁BNSi⁺]; 98 (50) [C₃H₉BNSi⁺]; 74 (100) [C₃H₉Si⁺]. ¹H NMR (in C₆D₆, 270 MHz): δ^{1} H = 3.41 broad s, 1H, NH, ¹J(¹⁵N¹H) = 69.1 Hz; 0.08 s, 9H, SiMe₃; 1.45 and 0.95 m, 2H, BCH; 1.40 m and 1.90 m, 12H, CH₂. C₁₁H₂₄BNSi (209.2): Calc. C 63.16, H 11.48, N 6.48%; Found C 62.71, H 11.67, N 6.69%. The other aminoboranes were prepared in the same way as 7.

8: yield: 91%; b.p. $105-107^{\circ}$ C/0.1 Torr; El-MS: m/z (%) = 281 (12) [M⁺]; 59 (100) [Me₂SiH⁺]. ¹H NMR (in C₆D₆, 270 MHz): δ^{1} H = 3.63 broad s, 1H, NH; 3.97 m, 1H, SiH, ¹J(²⁹Si¹H) = 182.4 Hz; 0.20 s, 6H, NSiMe₂; 0.12 d, 6H, HSiMe₂, ³J(¹H¹H) = 3.7 Hz; 0.60 m, 4H, SiCH₂CH₂Si; 1.40 m and 0.91 m, 2H, BCH; 1.80 m and 1.34 m, 12H, CH₂. C₁₄H₃₂BNSi (281.4): Calc. C 60.39, H 11.63, N 5.16%; Found C 59.79, H 11.39, N 4.98%.

9/10: 87%; b.p. 118–125°C/0.1 Torr; ¹H NMR (in C_6D_6 , 270 MHz); δ^1 H (**9**) = 3.46 broad s, 1H, NH; 4.08

m, 1H, SiH; 0.25 s, 6H, NSiMe₂; 0.08 d, ${}^{3}J({}^{1}H{}^{1}H) = 3.7$ Hz, 6H, HSiMe₂; $\delta^{1}H$ (**10**) = 0.15 s, SiMe₂; all other ${}^{1}H$ resonances of this mixture consist of overlapping multiplets.

11: 90% yield; b.p. 27–30°C/0.1 Torr; EI-MS: m/z(%) = 155 (10) [M⁺]; 140 (100) [M⁺–Me]; 73 (5) [M e_3Si^+]. - ¹H-NMR: 3.47 broad t, ¹J(¹⁴N¹H) = 39 Hz, 1H, NH; 0.04 s, 9H, SiMe₃; 1.7 m, 4H, BCH₂; 0.90 m and 0.83 m, 4H, CH₂.

12/12': 86% yield; 33–35°C/0.1 Torr; El-MS: m/z(%) = 169 (21) [M⁺]; 154 (100) [M⁺-Me]; 73 (8) [Me₃Si⁺]. ¹H NMR (in C₆D₆, 270 MHz): δ^{1} H = 3.7 broad s, 2H, NH; 0.09 s, 18H, SiMe₃; 0.99 two d, 6H, Me; 0.35–0.5 m, 0.7–0.9 m, 1.1–1.3 m, 1.88 m, 14 H, BCH₂, CH and CH₂. C₈H₂₀BNSi (169.2): Calc. C 56.80, H, 11.83, N 8.28%; Found C 56.00, H 11.94, N 8.34%.

13/13': 85% yield; b.p. 78°C/0.1 Torr; ¹H NMR (in C_6D_6 , 270 MHz); $\delta^1H = 3.69$ broad s, 2H, NH; 3.94 m, 2H, SiH, ¹J(²⁹Si¹H) = 183.6 Hz; 0.15 s, 12 H, NSiMe₂; 0.10 d, ³J(¹H¹H) = 3.7 Hz, 12H, HSiMe₂; 0.57 m, 8H, NSiCH₂CH₂Si; 1.03 two d, 6H, Me; 0.10–0.25 m, 0.45–0.60 m, 0.65–1.00 m, 1.61 m, 14H, BCH₂, CH and CH₂.

14: 95% yield; b.p. $68^{\circ}C/0.1$ Torr; ¹H NMR (in C₆D₆, 270 MHz): $\delta^{1}H = 3.68$ broad s, 1H, NH; 3.30 m, 1H, NCH; 1.14 d, 3H, NCHMe; 0.95 t, 3H, CH₂Me; 1.6-2.0 m and 1.2-1.5 m, 16H, BCH and CH₂.

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References and notes

- (a) R. Köster and K. Iwasaki, Adv. Chem. Ser., 42 (1964) 148;
 (b) B.M. Mikhailov, V.A. Dorokhov and N.V. Mostovoi, *Izv. Akad. Nauk SSSR*, (1964) 199; (c) A.B. Burg and J. Banus, J. Am. Chem. Soc., 76, (1954) 3903; (d) R. Köster, Angew. Chem., 75 (1963) 730; (e) H. Bellut and R. Köster, *Liebigs Ann. Chem.*, 738 (1970) 86; (f) R. Köster, H. Bellut and S. Hattori, *Liebigs Ann. Chem.*, 720 (1968) 1; (g) R. Köster and G. Seidel, *Liebigs Ann. Chem.*, (1977) 1837.
- [2] H. Nöth, Z. Naturforsch., Teil B, 16 (1961) 618.
- [3] W.R. Nutt and R.L. Wells, Inorg. Chem., 21 (1982) 2649.
- [4] R. Contreras and B. Wrackmeyer, Z. Naturforsch., Teil B, 35 (1980) 1236.

- [5] The molecular structure of 15 has been determined previously by R. Köster, G. Seidel and C. Krüger (1978, unpublished results) in full agreement with our results; we are grateful to Prof. Köster for providing the data set for comparison.
- [6] (a) A.B. Burg and E.S. Kuljian, J. Am. Chem. Soc., 72 (1950) 3103; (b) H. Jenne and K. Niedenzu, Inorg. Chem., 3 (1963) 68; (c) H. Nöth and M.J. Sprague, J. Organomet. Chem., 22 (1970) 11. (d) A. Meller, F.J. Hirninger, M. Noltemeyer and W. Maringgele, Chem. Ber., 114 (1981) 2519.
- [7] R.L. Wells and A.L. Collins, Inorg. Chem., 5 (1966) 1327.
- [8] H. Nöth and W. Storch, Chem. Ber., 109 (1976) 884.
- [9] J. Sandström, Dynamic NMR Spectroscopy, Academic Press, New York, 1982, p. 96.
- [10] (a) H. Nöth and B. Wrackmeyer, Nuclear magnetic resonance spectroscopy of boron compounds, in P. Diehl, E. Fluck and R. Kosfeld (eds.), NMR Basic Principles and Progress, Vol. 14, Springer, Berlin, 1978; (b) B. Wrackmeyer and R. Köster, in R. Köster (ed.), Houben-Weyl, Methoden der Organischen Chemie, Vol. 13/3c, Thieme, Stuttgart, 1984, pp. 377-611.
- [11] (a) H. Nöth, W. Tinhof and B. Wrackmeyer, Chem. Ber., 107 (1974) 518; (b) H. Nöth, in K. Niedenzu (ed.), Gmelin, 8. Aufl., Vol. 23/5, ¹¹B- und ¹⁴N-NMR-Spektren von Bor-Stickstoff-Verbindungen mit dreifach koordiniertem Bor, Springer, Berlin, 1975, pp. 197-277.
- [12] (a) L. Müller, J. Am. Chem. Soc., 101 (1979) 4481; (b) A. Bax, S.W. Sparks and D.A. Torchia, in N.J. Oppenheimer and T.L. James (eds.), Methods in Enzymology, Vol. 176, Part A, Academic Press, San Diego, 1989, p. 134.
- [13] B. Wrackmeyer, E. Kupce, R. Köster and G. Seidel, Magn. Reson. Chem., 30 (1992) 393.
- [14] (a) E. Kupce and E. Lukevics, J. Magn. Reson., 76 (1988) 63; (b)
 E. Kupce, B. Wrackmeyer, J. Magn. Reson., 97 (1992) 568.
- [15] B. Wrackmeyer and E. Kupce, in M. Gielen (ed.), *Topics of Physical Organometallic Chemistry*, Vol. 4, Freund Publishing House, Tel Aviv, 1992, pp. 289–352.
- [16] Further details of the crystal structure analysis are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wisseschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen (FRG) on quoting the depository number CSD-401089, the names of the author, and the journal citation.
- [17] (a) P. Idelmann, G. Müller, W.R. Scheidt, W. Schüßler, K. Seevogel and R. Köster, *Angew. Chem.*, 96 (1984) 145; *Angew. Chem., Int. Ed. Engl.*, 23 (1984) 153; (b) M. Yalpani, R. Köster and R. Boese, *Chem. Ber.*, 122 (1989) 19; (c) M. Yalpani, R. Köster and R. Boese, *Chem. Ber.*, 123 (1990) 1285.
- [18] (a) R. Köster, G. Seidel and R. Boese, *Chem. Ber.*, *121* (1988) 1137; (b) R. Boese, R. Köster and M. Yalpani, *Chem. Ber.*, *118* (1985) 670; (c) M. Yalpani, R. Boese and R. Köster, *Chem. Ber.*, *121* (1988) 287; (d) D.J. Brauer and C. Krüger, *Acta Crystallogr.*, *Sect. B*, *29* (1973) 1684.
- [19] (a) R. Köster, Angew. Chem., 72 (1960) 626; (b) H.C. Brown, E.F. Knights and C.G. Scouten, J. Am. Chem. Soc., 96 (1974) 7765.
- [20] D.E. Young and S.G. Shore, J. Am. Chem. Soc., 91 (1969) 3497.
- [21] E. Negishi, P.L. Burke and H.C. Brown, J. Am. Chem. Soc., 94 (1972) 7431.
- [22] R.H. Baney and G.G. Haberland, J. Organomet. Chem., 5 (1966) 320.
- [23] D. Seyferth and J. Robinson, Macromolecules, 26 (1993) 407.